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Brownian motion in quasibidimensional colloidal suspensions
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Digital video microscopy is used to study the Brownian motion in quasibidimensional colloidal systems,
consisting of spherical polystyrene particles suspended in water and confined between two glass plates. This
technique allows the direct measurement of the latévab-dimensional probability distribution function,
P(Ar,t), of the random variablar (the particle displacemenat timet, and the mean squared displacement
W(t). We studied the effect of confinement in highly diluted samples, whki¢fg is found to be a linear
function of time. The hydrodynamic interactions between the colloidal particles and the glass walls are found
to be more important than predicted by approximate hydrodynamic theories. Keeping fixed the separation
between the plates, we studied the effect of direct and hydrodynamic interactions between the particles by
increasing the particle concentration. In this case, the short time dynamics is characterized by means of a
theoretical approach that describes self-diffusion in terms of the static structure of the suspension. In all the
samples studied, we found negligible deviations dP(Ar,t) from Gaussian behavior.
[S1063-651%97)00512-4

PACS numbes): 82.70.Dd, 05.40¢]j

I. INTRODUCTION For the last two decades, self-diffusion has been studied
(theoretically, experimentally, and by computer simulatjons
Single particle motion of submicron size particles sus-mostly in the bulk, i.e., in homogeneous 3D colloidal sys-
pended in a fluid, commonly referred to as Brownian motiontems where the properties ¥¥(t) are determined only by
or self-diffusion, is a fascinating phenomenon, paradigm othe (direct and hydrodynamjdnteractions between the par-
the stochastic processes, whose description for noninteradicles [3,4]. However, in many cases of interest one is con-
ing particles can be found in various statistical mechanicgerned with the motion of Brownian particlgsroteins, poly-
and colloidal physics text booKd,2]. Briefly, the simplest mers, colloidal particles, eficin restricted geometriesear a
quantity describing Brownian motion is the mean squaredyall or between two of them, in a capillary, inside a cell, in
displacementW(t)=([r(t) —r(0)]?)/2 dim, wherer(t) is  a polymeric solution, etk. where the interactions, also direct
the position of the particle at timg dim is the system’s and hydrodynamic, between the particles and the surround-
dimensionality, and the angular parentheses indicate equiliings are now quite important to determine their motion.
rium ensemble average. For isotropic systems we can writ€hus, in this work we study the Brownian motion of colloi-
W(t) in terms of the displacement along only one direction,dal particles in a quasi-two-dimensional system by means of
sayx, i.e., digital video microscopy(DVM). Our system consists of
fluorescent polystyrene spheres of diameter0.5 um, sus-
W(t)=([x(t)—x(0)]?)/2. (1.1) pended in water and confined between two parallel glass
plates, forming a quasibidimensional system. We investigate
on one hand the effect of confinement on the lateral motion
by varying the separation between the plates, keeping the
particle concentration very low such that the interactions be-
tween particles are negligible. Thi/(t) is only affected by
the hydrodynamic coupling and the direct interactions be-
W(t)=Dot (1.2 tween the particles and the walls. On the other hand, for
fixed plates separation, we varied the particle concentration
in the diffusive time regime, defined iy 7s=M/{, where so that the interactions between particles are also important.
M and ¢ are the particle mass and the translational frictionLet us mention that some recent studies, by DVM and by
coefficient, respectively. The slofg®, of the mean squared evanescent wave dynamic light scatteriWDLS), of
displacement is the free-particle self-diffusion coefficientBrownian motion on similar systems to ours have been re-
given by the Einstein relatiom) o =kgT/{, wherekgT is the  ported in the literaturg5—8]. In Ref.[5] the authors address
thermal energy. For a spherical particle of diameterith  the problem of determining the particle concentration depen-
stick boundary conditions the friction coefficient is dence of the self-diffusion coefficient of hard spheres, of
{=3mnd, with 7 being the shear viscosity of the solvent. diameter~0.5 um at fixed plates separation of about three
Deviations from Eq.(1.2) are due to the particles’ interac- times the particles diameter, and various plates separations in
tions, hydrodynamic and direct, with the surroundifgther  the case of highly dilute samples. Although the work re-
particles at finite concentration, external fields, constrainingported in[5] seems similar to ours, two main differences
boundaries, ett. should be noted. First, the interactions between the particles

For noninteracting particle@.e., in the limit of infinite dilu-
tion) in a homogeneous three-dimensiof2D) suspension,
W(t) is a linear function of time, i.e.,
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in our systems are n@bnly) hard spheretsee our discussion static properties such as the radial distribution function or the
in Sec. Il). Second, we study the time dependenc&\gt) static structure factor, have been reported to describe accu-
with an experimental time resolution of 1/30 s. [I6] the rately the experimental and computer simulation data for
time resolution is 0.25 gabout one order of magnitude W,(t), obtained from dilute suspensions of strongly interact-
largen. Therefore, we study a qualitatively different set of ing colloidal particles, such as polystyrene spheres in water
systems at a shorter time scale, so that we look closer intl2—14].

the short-time regime. In Reff6,7], the authors focus their

attention on the motion of isolated large particlds=(1 wm) Il. EXPERIMENTAL DETAILS
and large separations between the plates. Although some .
cases considered [i7] are similar to our systems in terms of A. System preparation

the plates separation to particle diameter ratio, they study A colloidal suspension of fluorescent polystyrene spheres
only isolated spheres and do not consider the particle corsf diameter d=0.5+0.015um (Duke Scientifi¢ is dis-
centration dependence. 18] the authors study the Brownian persed and diluted in ultrapure wat@arnsteayl The sus-
motion in a suspension of hard spheres, of diametgml  pension is dialyzed to reduce the ionic concentration and the
and plates separation of @m, using DVM and EWDLS. excess of dissolved surfactants from the original batch. The
Here, again, the interparticle potential is different from oursystems studied are prepared as follows: in a clean atmo-
case. Since only one system is considerefBinthe depen- sphere of nitrogen gas, a tiny volume of suspension
dence on plates separation and particle concentration is npt0.5 ul) is confined between two carefully cleaned glass
determined. plates(a slide and a cover slipwhich are uniformly pressed

In the following sections we discuss some details correuntil a single layer of beads is obtained. The separation be-
sponding to the sample preparation and the detection of patween the glass plates is accurately controlled by previously
ticle trajectories(Sec. 1), then we present and discuss our adding in the suspension a small amount of spheres with
results(Sec. Ill), and in Sec. IV we summarize our findings. larger diametergfrom 1 to 2.9 um) that serve as spacers.
However, before going into the details, let us sketch soméinally, the system is sealed with epoxy reéipo-Tek 302
general aspects of the Brownian motion in the bulk, so that ito avoid any further contamination, especially from airborne
might provide some general basis to understand Brownia@Q,. By carefully controlling the volume of suspension used
motion in the case considered here. For 3D suspensions, & each sample, we avoid the contact with the epoxy resin
we mentioned beforé)V(t) =Dt in the limit of infinite di-  and this prevents any contamination from the solvents. The
lution. At finite concentrations, the mean squared displacesample is allowed to equilibrate for 1 or 2 days at a constant
ment is a linear function of time only in the short and in the temperature of 23 °@n contact with a circulating bathThe
long time regimes, with different proportionality constants systems prepared with this procedure remain stable for sev-
[3], i.e., eral weeks or even months.

Dst, tStONdZ/DO

(1.3 B. Digital video microscopy
DLt, t>t|~|2/D0, '

W(t)=
Digital video microscopy is now a standard technique. In

, . : . . our case, we observe the sample through a fluorescence mi-

e e otaron e ety el croscopa(zeiss Adoskop i a 100< of mmersio ob

coefficieﬁt from its low ¢ r? niration vali. reflects th jective (numerical aperture of 1)3The motion of the par-
' oncentration valle, refiects i€ yiq1e5 is recorded by a charge-coupled deWi€£D) video

effgct of th_e hydro_dynamlc _couplmg between particles ONcamera with a shutter exposure time of 1/250 s, attached to
their Brownian motion, and it depends only on the volume

fraction ¢ occupied by the macroparticles. Theoretical cal-the microscope and connected to a video tape recgkiér
culations and egperimyental resultspibrs as éfunction ofo Sony EV-100. The images are then digitized using a frame
are reported in the literatuf8,9]. On the other hand, the grabber with a resolution of 640480 pixef (Data Transla-

value of D, the long-time self-diffusion coefficient, con- tion). With this setup, we measure,m=16.7 pixel.

tains the effect of both dire¢electrostatic, excluded volume,
etc) and hydrodynamic interactions between particles. Thus,
the initial increase ofV(t) is linear, with slopeDg, and then Although in our samples there is enough room for the
it deviates from this behavior due to the direct interactions oparticles to move in the direction perpendicular to the plates,
the tracer particle with its neighbors, and at long times it iswe observed in all cases very little vertical motion, i.e., the
again linear with slop®, . Due to the large difference in the particles’ vertical motion was never large enough to move
characteristic time scales of the hydrodynamic and direct inthem out of focus. Let us mention, however, that for higher
teractions, their contributions on the Brownian motion of concentrations than those studied heee Table)l, the ver-
single particles can be decouplgt0,11]. This means that tical motion is larger and the particles can move out of focus.
the mean squared displacement can be expressed @&his effect is more pronounced for large plates separations
W(t)=W,(t)Ds/Dg, whereW,(t) is the mean squared dis- (=3 um). The positions of the particles along the lateral
placement of particles with the same direct interactions, buplane of motion are determined from the digitized images by
hydrodynamically uncoupled. Calculations from theoreticalusing the method deviced by Crocker and GfiEs|, which
approaches that expreg§(t) in terms of microscopic quan- allows one to locate the spheres’ centroids with a precision
tities of the system, such as the pair potential between colef 1/5 pixel (~0.0). The trajectories of the particles are
loidal particlesu(r), the particle concentration, etc., and the reconstructed from the particles’ positions at consecutive

C. Tracking particles
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P(Ax,t)

Ax/d

FIG. 1. Normalized probability distribution functior3(Ax,t)
of the random variableAx=x(t) —x(0) (the displacement of
Brownian particles during a timé&). Distribution functions(solid
lines) corresponding to particles in samplésandE are shown in
(a) and (b), respectively, for three different times. For comparison,
the Gaussian functionBg(Ax,t), constructed with the mean value

and variance of the experimental distribution functions, are also

shown(dashed lines

frames, with a time resolution of 1/30 s, in the following
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TABLE I. Here we summarize the experimental conditions for
the 5 samples studied. The glass plate separation is givén the
reduced concentration by* =nd? with n the average number of
particles per unit area observed in a franig, is the measured

short-time  self-diffusion coefficient (see Sec. 1Y and
D,=0.923 um?/s (calculated from the Einstein relatipn

Sample A B C D E

h (um) 2.9 2.0 1.0 1.0 1.0

n* 0.007 0.006 0.006 0.046 0.080
D,/Dy 0.58 0.42 0.39 0.35 0.26

tance between particles. We consider more complex situa-
tions (particles with two neighbors, ejcuntil the positions
r;(At) are completely identified. In each step, the particles
already identified are removed so that they are not consid-
ered in the next step. This procedure is then applied to
frames 2 and 3, and so on. The trajectories of the particles
that leave or enter the observation region during the time
interval analyzed are not considered. For concentrated sys-
tems, this method of tracking particles may interchange their
trajectories. For this reason, in this work we restrict our-
selves to the analysis of the Brownian motion only in dilute
and semidilute systems. Table | summarizes the characteris-
tics of the 5 samples studied. For each system, several runs
of 750 consecutive frames were digitized and the particles’
trajectories determined.

IIl. RESULTS AND DISCUSSION

The fundamental quantity describing Brownian motion is
the normalized probability distribution functidA(Ar,t) of
single particle displacementsr =r(t) —r(0), during a time
t [16]. As we have already mentioned, the properties of the
Brownian motion are usually discussed in terms of a more
simple quantity, namely, the mean squared displacement
W(t), which is nothing but the second momentRfAr,t),
ie.,

1

W(t)zm f dr(Ar)?P(Ar,t). (3.1

With the trajectories of the particles available, we can
calculateP(Ar,t), as well as other relevant quantities. If the

way. We first notice that the largest displacement of the parerthogonal directions andy defining the plane of motion
ticles between two consecutive frames was observed to bere independent, therP(Ar,t)=P(AXx,t)P(Ay,t), with

less than 1.8 [see Fig. 1a)]. As the initial step, we identify
the positionsr;(0) of the particles, which in the first frame

P(Ax,t) andP(Ay,t) being the normalized probability dis-
tribution functions of displacements along the directions

(t=0) are isolated, i.e., particles that do not have any neighandy, respectively, at time. To calculate these functions

bor closer than 8. Thus, in the second frame
(t=At=1/30 s) there will be only one particle whose posi-
tion r(At) satisfies the conditiofr (At) —r;(0)|<1.5d, we
then taker;(At)=r(At). We then search for the particlés

we choose discrete intervals of size 1 pixel@.1d) and
count the number of displacemenis, Ax, andAy at timet
whose values fall within each interval. The normalized func-
tions are obtained by dividing the histograms by the total

in the first frame that do have just one neighbor at a distanceumber of events considered, which in all the samples stud-

between 1.8 and 3, and we look for the particles in the
second frame whose positions satiffyAt) —r;(0)|<1.5d.
If only one particle is found, it is particlg if there are two,

we calculate the distance between the particles of the twtem

ied here were of order 26-10°, so that there are enough
data to average out statistical fluctuations, thus obtaining
smooth functions. Furthermore, in a homogeneous 2D sys-
in thermal equilibrium, it should happen that

possible configurations from frame 1 to frame 2. We choosd®(Ax,t)=P(Ay,t). This is in fact what we found in our

the configuration leading to the lower value of the total dis-

systems and also th&(Ar,t)=P(AXx,t)P(Ay,t). Thus, it
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is sufficient to discuss the results only for one of these func- 0.08 T T v T
tions. In Fig. 1 we showP(Ax,t) (solid lineg for samplesA
[Fig. (@] andE [Fig. 1(b)] (see Table)l As one can see in sample
these figures,P(Ax,t) are symmetric functions centered 0.06 F eese E J
aroundAx=0, and they spread out as time increases due to
the diffusion of the particles. If the confinement is increased, T+ A
by reducing the distance between the plates and/or by in-
creasing the particle concentration, the particles become less
mobile and the distribution functions are narrower. In other
words, sinceP(Ax,t=0)= §(Ax) for all the samples, these oo®
functions spread slower for more confined systems due to the + e cose®®’
increased interactions of the particles with their surround- 0.02r . . o*
ings. This effect can be seen in .Fig. 1, where we shpw ++++++++++H+++
P(Ax,t) for the least and most confined systems we studied.
In an isotropic system of noninteracting particles the dis- 0.00 1 1 1 1
tribution functionsP(Ax,t) are Gaussian functions centered 0.0 0.2 0.4
around Ax=0 (i.e., with (Ax)=0) and with dispersions
a(t)=(Ax?(t))= 2Dt [1]. For 3D colloidal suspensions
at finite concentrations, the interactions between the particles
introduce negligible non-Gaussian corrections so that Gauss-
ian functions with dispersions(t)=2W(t) are excellent
approximations for the distribution functiof47]. Here we
can ask the question: to what extent can the motion ofn & more general way, E43.3) can be written a$3,17,1§
Brownian particles under confinement still be described by
Gaussian probqbility di;tribution funqtiqns? In our case, we Fs(k,t)=e‘k2""(‘){1+%[kZW(t)]Za(t)+-~-}, (3.5
can answer this question by quantifying the deviation of
P(Ax,t) from Gaussian behavior. For all the samples studieqynere
here, we obtained functiorB(Ax,t) that are similar to the

at)
o
:

FIG. 2. Non-Gaussian paramete(t) for samplesA andE.

FO(k,t)=e KW, (3.4)

histograms plotted in Fig. 1, i.e., they look very much like ([x(1)—x(0)]%

Gaussian functions and in fact one can make a nonlinear a(t)= > —1 (3.6)
least squares fit to find the Gaussian function that best fits the 3([x(t) =x(0)]%)

experimental data fdP(Ax,t). However, we should proceed

in a different and more rigorous way. FroR(Ax,t) or, is the leading term containing the non-Gaussian effects. In

more directly, from the trajectories of the particles, we canFig. 2 we show a plot of(t) for the samples in Fig. 1. For
calculate the momentg, (t)=([x(t) —x(0)]') of the distri-  the other samples the values of this quantity lie below the
bution functions. With the first two moments we can con-curve for sample Efilled circles. Thus, the results plotted in
struct normalized Gaussian functioﬁ%‘(AX,t) having the Flg 2 show that the non-Gaussian effects are more important
mean value and dispersion of the experimental distributiofor more confined systems, but within the range ahdn*

function, i.e., studied here they are very small. Therefore, the Gaussian
approximation is a good approximation.
Ax2 Let us now discuss in more detail the effect of the inter-
X ; . .
Po(AX,t)= F{——} (3.2 actions between the particles. As mentioned before, the
(t) 4W(1) quantitative effect of the interactions on the Brownian mo-

tion is better visualized in terms of the mean squared dis-
whereW(t) is the measured mean squared displacement. Welacement. Thus, in Fig. 3 we plav/(t) for the 5 samples
have sefu4(t)=0 in Eq.(3.2), since for all the samples we studied. In Fig. 8) the mean squared displacemésaym-
found that [(x(t) —x(0))|/d~10"3~107%. In Fig. 1 we bols for three highly diluted samplegA, B, and C, with
plotted also the functionPg(Ax,t) (dashed lines and we  reduced concentratioms ~6x 10~ 3 (see Table)l] at differ-
can see that they overlap the experimental functions. Howent plates separations=6d, 4d, and &, are shown. Here
ever, to have a more quantitative account of the extent ofve can see the effect of reducing one dimension. For com-
non-Gaussian behavior &f(Ax,t), we look at the moments parison, in this figure we also plot the mean squared dis-
of higher orderus, w4, €tc. A customary way to character- placement corresponding to the free diffusion of our colloi-
ize stochastic processes suchAaqt) is by looking at their  dal particles in a 3D suspensi¢dashed ling given by Eq.
characteristic function&(k,t), which are nothing but the (1.2). As one can see, the reduction of one dimension has an
Fourier transform of the distribution functiof%6], i.e., appreciable effect on the lateral motion of the colloidal par-
ticles, which become less mobile as the particles are more
) ) confined. In this figure one can also appreciate Wiét) for
Fs(k,t):J dxP(Ax,t)e” K= (e~ XV=x(O), these three samples seems to increase linearly with[tse
(3.3  predicted by Eq(1.2)], but with slope smaller thaD, i.e.,

For the processes described by E2}2) we have W(t)=D¢t, (3.7
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culations of the friction coefficient of a spherical particle
near a plane wall show that it increagesfact it diverges in
both directions, parallel and perpendicular to the plaae
the distance between the wall and the particle decreases
[2,19]. Thus, a decrease in the particles mobility in a con-
fined geometry is expected. However, a direct quantitative
comparison is not possible since, to our knowledge, there is
not an equivalent result for the case where the spherical par-
ticle is not close to one wall, but confined between two of
them. We can, however, compare our results with the theo-
retical calculations by assuming that the hydrodynamic effect
from the walls is additive. In this way we found that the
measured values fd ¢ are about 30—40 % lower than those
obtained by the superposition assumption. Therefore, we
found that the lateral motion of “freely diffusingfi.e., in
the infinite dilution limiY colloidal particles in a quasi-
bidimensional geometry can still be characterized by a mean
.5 . . . . squared displacement given by a linear function of time with
slope D¢ [Eq. (3.7)], which is smaller than the calculated
value from the superposition assumption of the hydrody-
namic coupling with both confining walls.
Now, at finite concentrations we can expect, as in the 3D
case, a further reduction of the slopeWft) as a result of
the interactions, both hydrodynamic and direct, between the
particles. Also, as in 3D, we can expect the valueDgfto
decrease as the particle concentration increases, as a result of
the increase of the hydrodynamic interactions with the other
7 particles. We can even expect a time scale separation from
“short” times, whereW(t) follows Eg.(3.7), to another lin-
(b) ear regime at “larger’ times, whereN(t)=Dt, with
D, <Ds. In Fig. 3b) we plot W(t) for three samples with
) increasing reduced concentratior® =0.006, 0.046, and
0.0 0.2 0.4 0.6 0.8 1.0 0.080, but with the same separatibr1 um between the
t (s) glass plategsamplesC, D, and E, respectively. As ex-
pected,W(t) increases more slowly as the particle concen-
FIG. 3. Measured mean squared displacement vs teyen-  tration(and the interactions between partiglexreases, and
bols). In (a) we show the effect oi(t) of reducing the distance in fact we see a strong effect aif(t). As we said before,
between plates. Ib) we show the effect, at finite concentrations, this effect arises from hydrodynamic and direct interactions,
of the direct and hydrodynamic interactions with other particles.so the question is: can we estimate the corresponding contri-
The initial slopes(solid lineg are calculated using only the initial putions from each of those interactions? And still another
data pointga), and the FDA approximatiofsee text (b). For com-  question is the following: is there a time scale separation as
parison, we also ploiV(t) for a freely diffusing particle in 3D. in 3D? Under the assumptidintroduced for 3D suspensions
by Medina-Noyola[10]) that the effects from the hydrody-
with D,<D,. Here we will refer to the slopB® (as in 3D)  hamic interactions and direct interactions can be decoupled,
as the short-time self-diffusion coefficient. Since the samplese., that the hydrodynamic effects enter through a renormal-
are highly dilute, the interactions between the particles arézation of the value oDy, we can answer both questions by
negligible. As we mention in the Introduction, in 3D suspen-determiningD from the data in Fig. ®). For sampleC it
sions at finite concentrations, the initial slope of the mearhas been done by taking only a few initial points, as we
squared displacement is reduced from its free diffusion valualready explained. For the other two samglBsandE) this
D, due to the hydrodynamic interactions between the parealculation is somewhat more involved. For these samples
ticles. Here we have also a reduction in the initial slope ofwe found that the slope o#(t) changes with time, and
W(t), which in the absence of interactions with other par-therefore it depends on which data points are used to calcu-
ticles, must be due to the effect of the hydrodynamic coudate the slope. Since the slope changes, it is not clear how to
pling and direct interactions between the particles and thealculateDg, and therefore, to quantify in a precise way the
confining walls. We can calculate the valuelnf by making  dependence oD on the particle concentration. However,
a linear least squares fit to the experimental data\fer). In ~ we could still take the value of the slope determined from the
Fig. 3(a) the solid lines are straight lines obtained by fitting initial data points just as an estimate Bf, then the differ-
only the first few(4-5 data points. As we can see, theseence between the measurd{t) andDt would be an esti-
lines constructed with the initial points reproduce the experiimate of the effect of the direct interactions. We can, how-
mental data in the whole time interval studied. The valuesver, use a different approach to calcul&tg as explained
obtained in this way are quoted in Table I. Theoretical cal-below.

w(t)/d*

1.0 6 0 0 0.006
00O 0.046
OO 0.080

w(t)/d?

0.5
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— — Dot h=1um
Dt
. —-— FDA
. ST
1.0 v ey 1.0 n*
—_ % 000 0.046
IC: ~ K
& = OO 0.080
. =
n
osr 7 0.046 0.5
—— 0.080
0.0 1 1 L 0.0 L
0 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0
r/d t (s)
FIG. 4. Radial distribution functions corresponding to samples FIG. 5. W(t) vst for samplesD andE (symbolg. Dashed and
D (n*=0.046) andE (n* =0.080). solid lines are the results of FDA approximation $it) andDt,

respectively(see text

In the case of 3D colloidal systems, theoretical ap-
proaches have been developed to describe colloidal dynam
propertle_s, such a8/(t), in terms of static propernes of the istribution function of particles around a central dae20].
suspension. The accuracy of these theories has been estah- functi be determined directly f th .
lished by comparing their predictions with experimental and,. © ,unc |_o_ng(r) can be determined directly trom the par
computer simulation results for 3[10,12—-14 and the pre- ticles positions[23]. In Fig. 4 we preseng(r) for samples

dictions of their 2D versions with computer simulatid24]. D ar_ld E, from which the functlonh(k) is obtained by a
One of these theories, referred to Bigk plus decoupling Founer—Be_sse! transformgtlon. Frof(t), one can calcu- .
approximation(FDA), has the appealing characteristic that, late self-diffusion properties such as the mean squared dis-
in order to calculate self-diffusion properties of interacting p!acement, vglqcﬂy autocorrelatllon function, a}nd self-
colloidal particles, it requires as input only static propertiesdlfoSIOn c_oefflment. _Aranda-Esplnpzat al. [21] discuss
of the suspension and the short-time self-diffusion coefficienf®Me details concerning the numerical procedure. .
Ds. In this approach the effect of the direct interactions en- The FDA results foM(t) are compared with the experi-

ters through the static structure, while the hydrodynamic efmental data in Fig. 5. As we (.-»(-pllained abo is not
fects are contained in the value bE,. accurately determined from the initial slope\Wft). So, we

Let us mention briefly the salient features of the FDAUS€Ds as a fiting parameter in FDA, i.e., we choose the
theory. It is based on the generalized Langevin equation Value ofDs that made the FDA and the experimental results
coincide. Thus, here we use the theory in a rather different
dv(t) t ) way, i.e., instead of using as an inpufk) and Dg to get
M —g = v+ - fOAg(t—t’)v(t’)dt’+F”“(t), W(t), we useh(k) andW(t) to getDg. The values oD,
3.9 obtained from this procedure are slightly higher than the ini-
' tial slope ofW(t), and they are used to draw the solid lines

wherev(t) is the particle velocityf(t) is a white random in Figs. 3b) and 5, and are also quoted in Table I. Let us
force, F"(t) is the colored random force exerted by the othermention that the fitting of FDA to the experimentad(t) is
particles on the labeled particle as their distribution depart§ensitive toDs. For instance, a change of 2 or 3% in the
instantaneously from its radial equilibrium average, and the/alue of Ds will make the FDA curve fall at long times
kernelA(t) is a time-dependent friction function. The time- (=1 s) out of the symbols representing the experimental data
dependent correlation function ¢f"(t) is related to the in Fig. 5. The relative uncertainty in the measured value of
(time-dependent friction coefficient by a fluctuation- W(t) is of orderN~*2[22], whereN is the number of events
dissipation relation. The main result of the FDA is an expresaveraged. In our case, as we mentioned ablive]0°— 10°.

sion for the time-dependent friction functiax(t) in terms ~ Thus, the relative uncertainty is10~2—10"°. On the other

i:%rrelation functiorh(r)=g(r) — 1, whereg(r) is the radial

of static properties of the 2D suspensi@i], hand, the accuracy in the determination of the particles’ po-
ey . — _2 .
sition is~10 “d (see Sec. Il ¢ Therefore, error bars in our
AL()= keTn (=  k3h3(k) o~ KEDG{L+ U1 +nh( ]} measurements M/(t)_are within the symbols in Figs. 3 and
47 Jo ~ 1+nh(k) ' 5. Thus, differences i of a few percent are important. If

(3.9  the FDA results are correct, two direct consequences should

be noted. First, higher values Bf; than the initial slope of
This equation writeA (t) in terms of onlyh(k) andDs. W(t) mean that the interactions between the particles shift
The static property(k) is the Fourier transform of the total the short time regime to shorter times than the time resolu-
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tion of our techniqug0.033 3. Second, in Fig. 5 we see a 1.0
significant decrease iW(t) when the concentration in-
creases. This decrease Wf(t) must be due to thécom-
bined effect of the increment of both the hydrodynamic and 0.8
direct interactions between the particles, as a result of the
increase in the concentration. Since, according to the FDA
results, the direct interactions contribute only with a small 0.6
part of the effecfcompareW(t) with D¢t], we may con-
clude that the hydrodynamic interactions should be respon-
sible for most of the effect. The shift of the short time regime 0.4
may be understood in terms of the particles direct interac-
tions. In Fig. 4 we see that according ¢¢r) the particles
tend to be close to each other, and in fact there is strong 0.2
evidence that, under confinement, the effective interparticle
potential for polystyrene spheres in water has an attractive
component around the position of the maximum gif) 0 2 4 6 8
[23-25. Thus, at finite concentrations the first layer of kd
neighbors is very close to the particle and the initial linear
regime[Eq. (3.7)] only occurs at very short times. On the
other hand, according also to Fig. 4, our systems are not
highly structured(i.e., the direct interactions are not too
strong. Thus, a small contribution from the direct interac-
tions toW(t) is reasonable. Thus, based on the FDA results, \
we can say that the hydrodynamic interactions between the o.6F \
particles are much stronger under confinement than in the
bulk. For comparison, let us say that in the bulk ‘
D¢/Do=1-1.83p+0(¢?) in a suspension of spheres with 0.4F \ \\kd=2.05 .
volume fraction¢ [9]. For sample® andE the correspond- AN
ing volume fractions ¢=mn*d/6h, i.e., only taking into \ N
account the spheres and the solyemte 0.012 and 0.021, 0.2} \ N e
respectively. Thus in 3D systems with these valueg,ahe kd=2.74 ~
contribution toD¢ from hydrodynamic interactions between T~ - - _
the particles would be quite small. 0.0 L ' A= S
Finally, and for completeness, let us note that in scattering 0.0 0.2 0.4 0.6 0.8 10
experimentgdynamic light scattering in 3D and evanescent
wave dynamic light scattering in quasi-2Erom colloidal
suspensmr_]s, one. measurgs the dynam|c structure factor FIG. 6. Self-dynamic structure factor corresponding to sample
F(k,t). This quantity describes the time evolution of local g shown as function ok (a) and time(b).
particle concentration fluctuations in Fourier space. For
monodisperse systems wilt particles,

Fs(k,t)

Fs(k,t)
-

1 N IV. CONCLUSIONS
Fkt)=1 2 (exp{—ik-[r()=ri(0)]}). (3.10
hi=1 In this work we studied the motion of colloidal particles
in a quasibidimensional geometry. We presented experimen-
For values of k where the static structure factor tal results for time-dependent quantities such as the mean

S(k)=F(k,t=0)=1, the cross termsi¢j) vanish and sguared displacemept and the probgbility distribut?on func-
F(k,t) reduces to its self-pari €]) or self-dynamic struc- tion, along the effective plane of motion. The technique em-
ture factor, which then describes single particle dynamics iPloyed in this study, DVM, allows us to visualize directly the
Fourier space. From Eq$3.3) and (3.10, and takingk in  lateral motion of the particles. We considered highly dilute
the direction ofx, we see that the self-dynamic structure Suspensions where the only effect on the particle motion
factor is nothing but the characteristic functidhy(k,t). arises from its interactions with the walls, which are found to
Thus, W(t) can be obtained from light scattering experi- be larger than predicted by approximate hydrodynamic theo-
ments by applying the back Fourier transformation to theries. This point requires further theoretical investigation. For
measuredF4(k,t) and then using Eq(3.1). In practice, a more concentrated samples, we also found that the hydrody-
more economic way to obtain the mean squared displacaramic coupling between the particles induces a stronger ef-
ment is by means of the Gaussian approximafieq. (3.4)].  fect than in the bulk and the effect of direct interactions on
For illustration, in Fig. 6 we show the self-dynamic structurethe particle motion can be described using the 2D version of
factor corresponding to sample, obtained fromP(Ax,t) a theoretical approach derived in the framework of 3D ho-
through Eq.(3.3. mogeneous suspensions. This approach was used to charac-
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